
Morgan Elder

CMPSCI 4760

3 February 2022

Project 1

Observations

1. Run your program and observe the results for different number of processes.

The following screenshot shows when no arguments are passed to simplechain. The usage

message is displayed.

The following screenshot shows the results of passing the arguments of 0, 3, and 5 as the number

processes to simplechain. If 0 processes are forked, then there is only a single process displayed.

If more than more 1 process is forked (3 and 5), then the program prints the results in the order

that the processes are forked. When the number of forked processes is about 5 or more, one of

the parent processes tends to terminate before the child makes a call for the parent process ID. At

that time, the child (orphaned) process is assigned the parent process of 1.

2. Redraw Figure 3.2 by filling in actual PIDs of the processes in the figure for a run with

command-line argument value of 4

This screen shot is the result of chaining 4 processes.

This is a redraw of figure 3-2 from the text.

3. Experiment with different values for the number of processes (nprocs) up to a maximum of

100 processes. Observe the fraction that are adopted by init.

Here the max number of processes cannot be exceeded.

The script countOrphanProcs.sh executes the simple chain program with randomly generated

number of processes. Then, the counts of processes adopted by init are displayed

4. Place sleep(sleeptime); directly before the final fprintf statement in the code. Make sure to

use the sleeptime parameter from command line or set it to a default value of 3. Make the

previous observation again.

Here is the updated experiment that sleeps for 5 seconds before each fprintf. The script utilizes

the command-line arguments for nprocs and sleeptime (options p and s). Again the number of

processes for each iteration is randomly generated by the script.

5. Put a loop around the final fprintf in your code. Have the loop execute niters times. Put sleep(

sleeptime); inside this loop just before the fprintf statement. Pass niters and sleeptime using

command line options. Run the program for several values of nprocs, niters, and sleeptime.

Observe the results.

The next two screenshots show the results of a script that executed the simplechain program 5

times. Each execution (or experiment) used randomly generated values for nprocs, sleeptime,

and niter.

6. Modify the code by adding the wait function call before the final fprintf statement. How does

this affect the output of the program? Are you able to execute with a value of nprocs as 100?

In the simplechain program, the statement wait(NULL) was added before the final fprintf

statement and before the sleep statement. The wait statement returns -1 if the current process is

not waiting for a child process to finish. This error is reported through the perror message.

In the following screenshot, the program could not complete executing without returning an

error. The third process is never printed because all parent processes are terminated from the

perror. Also, the looping structure of fprintf does not iterate more than once.

When the number of processes is set to 100, some looping does occur. However, some iterations

do not complete 100 fprintf statements. Instead, the max number of processes for an iteration

gets to around 22.

7. Modify your code by replacing the final fprintf statement with four fprintf statements, one

each for the four integers displayed. Only the last one should output a newline. What happens

when you run this program? Can you tell which process generated each part of the output? Run

the program several times and see if there is a difference in the output.

Note: The program is correctly named in the following screenshots due a change from

simplechain to chain.

After adding separate fprintf statements, the results are not different from the results of step 6.

The wait/perror statements still prevent some iterations and processes from executing fprintf.

Also, the sequence of printed statement is not affected from separate statements. The following

8. Modify your code by replacing the final fprintf statement with a loop that reads nchars

characters from stdin one character at a time, and puts them in an array called mybuf. The values

of nprocs and nchars should be passed as command line options. After the loop, put a ’\0’

character in index nchars of the array so that it contains a string. Output the PID of the process

followed by a colon, a space, the string in mybuf, and a newline to stderr in a single fprintf. Run

the program for several values of nprocs and nchars. Observe the results. Redirect the stdin from

a file with some text that should be enough to make sure that all the processes terminate

normally (more than nprocs × nchars characters).

In the next screenshot, the chain program is executed with arguments 3 and 3 for nprocs and

nchars respectively. Entering the characters of “cat” through stdin prints the current process’

parent id and the char input. The wait/perror statements prevent the third process from printing.

The following screenshot shows the output of a file containing the numerical characters of 1

through 9 in ascending order. The file is used as stdin for the chain program which reads the

amount of characters specified in nchars.

